Plant gDNA Miniprep Kit

User Guide

ADVANCED MICRODEVICES PVT. LTD.

21, Industrial Area, Ambala Cantt - 133006 (INDIA) Tel: 0171-2699290, 2699471, 2699274, Fax: +91-171-2699221, 2699008 Email: info@mdimembrane.com, Website: www.mdimembrane.com

Table of Contents

Page

1.	Introduction							
2.	Applications							
3.	Storage Conditions							
4.	Quality Assurance							
5.	Safety Information							
6.	Lot Release Criteria							
7.	Technical Support							
8.	Kit contents							
9.	Specifications							
10.	How to Begin							
11.	Procedure							
12.	gDNA Isolation from Plant Tissue							
1	2.1 Principle	9						
1	2.2 Important Points to be Considered	10						
1	2.3 Protocol	11-12						
13	Trouble Shooting Guide	13-14						
14.	Product Use Limitations	15						
15.	Product Warranty and Satisfaction Guarantee	15						
16.	Ordering Information							

1. Introduction

The mdi Plant gDNA Miniprep Kit is a fast, economical and easy isolation method of high purity gDNA from plant tissues. The buffer system provided in the kit allows tissue lysis followed by selective binding of gDNA to the spin column.

Purified gDNA is eluted in low-salt buffer or water for variety of downstream applications. This technology does away with the cumbersome methodologies of phenol extraction (associated with slurries formation) as well as ethanol precipitation (associated with anion exchange based purification system) for desalting.

2. Applications

- 1. Automated Fluorescent Sequencing
- 2. Radioactive Sequencing
- 3. Restriction Digestion
- 4. Cloning
- 5. PCR
- 3. Storage Conditions

Optimum storage conditions at which all components of the kit can be preserved without alteration in it's quality and performance.

One Year	RT
Longer Storage	2-8°C

Important

In case of any precipitation observed in the buffers, re-dissolve by warming at 37°C for sometime and cool it down to room temperature.

4. Quality Assurance

The mdi Plant gDNA Miniprep kit is designed for various pre-determined specifications and user requirements such as yield, purity, ruggedness, shelf life and functional convenience.

These are produced through a well defined quality management system certified by Underwriters Laboratories, USA for ISO 9001: 2008 which ensures intra lot as well as lot to lot consistency.

5. Safety Information

The buffers and the reagents may contain irritants, so wear lab coat, disposable gloves and protective goggles while working with the Plant gDNA Miniprep Kit.

6. Lot Release Criteria

Each lot of Plant gDNA Miniprep Kit is tested against predetermined specifications to ensure consistent product quality.

7. Technical Support

At mdi, customers are our priority. We will share our experiences to assist you to overcome problems in general product usage as well as customize products for special applications. We will

- * Stimulate problems, and suggest alternative methods to solve them.
- * Make changes/ improvements in our existing products/protocols.
- * Develop special new products and systems especially to satisfy your needs.

We welcome your feedback to improve our products.

8. Kit Contents

Contents		Quantity	Storage Temperature		
Plant Mini Spin Columns	50	250	1000	RT	
mdi Shredder Mini Spin Columns	50	250	1000	RT	
Buffer PL 1	36ml	180ml	720ml	RT	
Buffer PL 2	18ml	90ml	360ml	RT	
Buffer PL 3	36ml	180ml	720ml	RT	
Buffer PLW	60ml	300ml	1200ml	RT	
Buffer PLE	24ml	120ml	480ml	RT	
RNase A (2.3 Units/µl)	500µl	2.5ml	10ml	2-8°C	
Collection Tubes (Spin Column)	50	250	1000	RT	
Collection Tubes (Shredder)	50	250	1000	RT	
Hand Book	1	1	1	-	
Certificate of Quality	1	1	1	_	

9. Specifications

Maximum amount of Plant Tissue	100mg wet weight 20mg dry weight				
Capacity of column reservoir	700µl				
Binding capacity of membrane (ds DNA)	50µg				
Minimum Elution volume	50µl				

10. How to Begin

A. Sample collection and storage

Do's

- 1. For obtaining best results, the starting material should be either fresh or has been immediately frozen in nitrogen and stored at 80° C. Ground tissue powder can also be stored at 80° C.
- 2. After harvesting, the tissue should be dried or lyophilized for storage at room temperature.
- 3. For high DNA quality, samples should be dried within 24 hours after collection.
- 4. For higher yields, young samples should be collected as they contain more cells per weight and smaller amount of polysaccharides and polyphenolics making handling easier.

Don'ts

- 1. Do not subject the stored samples to repeated freezing and thawing as it leads to reduced DNA size.
- 2. Poor-quality starting material leads to reduced length and yield of purified DNA.
- B. Maximum Amount of Starting Material

Do's

For dried tissues, reduce the maximum amount of starting material.

Don'ts

Do not exceed the recommended maximum amount of starting material, as it will result in inefficient lysis, leading to low yields and purity.

C. Clearing Lysate with mdi Shredder

Do's

- 1. It is recommended to remove cell debris and salt precipitates during gDNA isolation procedure, as it can lead to clogging of spin column.
- 2. For particulate matter forming a compact pellet, it is recommended to use mdi shredder spin column , remove all the debris and precipitates making the preparation of cleared lysate rapid and efficient.
- D. Highly Viscous Samples

Do's

For lysate involved in layer formation, it is recommended to perform an additional centrifugation step.

Don'ts

Do not load highly viscous lysate and large amount of precipitates on the spin column, as the centrifugation of entire lysate through spin column can result in sheared DNA.

11. mdi Plant gDNA Miniprep Procedure

12. gDNA Isolation from Plant Tissue

12.1 Principle

Obtaining highly pure gDNA from plant tissue using mdi Plant gDNA Miniprep Kit involves:

Grinding and Lysis of Plant Tissue

To efficient lyse the plant tissue, grind it well in liquid nitrogen before addition of PL1 and RNase A.

Capturing of gDNA on mdi shredder Spin Column

In order to facilitate adsorption of gDNA onto the spin column, suitable conditions of salt concentration and pH are required, which is achieved by addition of binding buffer PL3.

Washing

Subsequent to DNA binding, unwanted components like proteins, carbohydrates and polysaccharides are washed away.

Washing is done by buffer PLW.

Elution

Salt concentration and pH of elution buffer is important for elution efficiency. Elution occurs at basic conditions and low salt concentration. Elution is performed with buffer PLE.

12.2 Important Points to be Considered

Starting Material

- 1. Fresh samples should be used.
- 2. Maximum amount of plant tissue should be 100mg wet weight or 20mg dry weight.

Centrifugation:

- 1. All centrifugation steps should be carried out at room temperature $at \ge 10,000 \text{ rpm}.$
- 2. In case of choking of spin column, increase centrifugation time.

Lysis

- 1. For efficient lysis, grind the tissue completely into powder. To reduce lysis time, grind the sample in liquid nitrogen before addition of buffer PL1.
- 2. Add RNaseA to the sample before addition of buffer PL2 for complete removal of RNA.
- 3. In case of any precipitation in buffers, re-dissolve by warming to 37°C for few minutes.

Washing

- 1. To remove residual wash buffer, spin the column with close lid for 1 minute at \geq 10,000 rpm.
- 2. Flow through should be properly discarded before centrifugation otherwise residual buffer will not be removed and may inhibit enzymatic reactions.

Elution

- 1. Elution buffer must be dispensed on to the center of column. For maximum elution efficiency, incubation time should be increased by 2-3 minutes.
- 2. For obtaining highly concentrated gDNA, elution should be done in two successive steps with buffer PLE in separate micro centrifuge tubes.

12.3 Protocol

 Grind the plant material (Maximum 100 mg wet or 20 mg dried weight) under liquid nitrogen to a fine powder using a mortar and pestle. Transfer the powder and liquid nitrogen to an appropriately sized micro centrifuge tube and allow the liquid nitrogen to evaporate. Do not allow the sample to thaw, proceed immediately to the next step.

Note: If liquid Nitrogen is not available then simply grind the plant material with mortar and pestle after adding 400µl buffer PL1, transfer it to an appropriately sized microcentrifuge tube. Then add 10µl of RNase A solution from stock (2.3 units/µl), mix well. Proceed to step 3.

- 2. Add 400µl of buffer PL1 and 10µl RNase A solution from stock (2.3 units/µl), mix by vortexing.
- 3. Incubate the mixture for 10 minutes at 65 °C in an oven or water bath. Mix 2-3 times during incubation by inverting the tube.
- 4. Add 130 μl of Buffer PL2, to the lysate mix gently but throughly by inverting the tube 5-6 times and incubate the mixture on ice for 5 minutes.
- 5. Centrifuge the lysate at \geq 10,000 rpm for 5 minutes.
- 6. Remove the supernatant carefully and apply it to the mdi shredder mini spin column placed in a 2ml collection tube and centrifuge for 2 minutes at \geq 10,000 rpm.
- 7. Transfer the supernatant of the flow through without disturbing the pellet from the above step to a new micro centrifuge tube.
- 8. Add 1.5 volumes of buffer PL3 to the cleared lysate and mix by pipetting.

For example, to 450µl lysate add 675µl buffer PL3.

9. Place the plant mini spin column in a collection tube and pass the above mixture through the spin column by centrifuging it at \geq 10,000 rpm for 1 minute. Discard the flowthrough.

Note: The maximum volume of column reservoir is 700 μ l. For sample volumes greater than 700 μ l, simply load the remaining sample, balance the micro centrifuge and spin again. Discard the flow through.

- 10. Place the plant mini spin column in the same collection tube. Wash the spin column with 500 μ l of buffer PLW by giving a spin at \geq 10,000 rpm for 1 minute. Discard the flow through.
- 11. Again add 500µl of buffer PLW to the plant mini spin column and centrifuge for 1 minute at \geq 10,000 rpm. Discard the flow through.
- 12. Place the spin column with close lid in the same collection tube and centrifuge at \geq 10,000 rpm for 1 minute.

Important: This step is necessary to remove residual wash buffer.

- 13. Place the plant mini spin column in a fresh 1.5 ml micro centrifuge tube (not provided).
- 14. Elute the bound gDNA in 100 μ l of buffer PLE (users can elute the gDNA in a minimum 50 μ l volume if they wish to increase the concentration of gDNA) by adding the buffer directly to the center of the column and let it stand for 5 minutes. Spin at \geq 10,000 rpm for 1 minute.

Note: Repeat step 14 once more by taking a new micro centrifuge tube to increase the total recovery of gDNA.

- 13. Trouble Shooting Guide
- A. Little or no Yield of gDNA
- 1. Overloading of spin column

The wet plant sample should not weigh more than 100mg and the dry plant sample not more than 20mg.

2. Incorrect lysate preparation

Check buffer volumes and ensure that incubation at 65 °C is not less than 10 minutes for proper cell lysis. Also for proper precipitation of proteins, incubation on ice should not be less than 5 minutes after adding buffer PL2. Check buffer PL1 for precipitates.

3. Spin column choked

- 4. Insufficient disruption of plant sample
- 5. Improper dispensing of elution buffer
- 6. Insufficient incubation of elution buffer in the column membrane

The column can choke in case the lysate is not clear before loading.

Re-dissolve by warming to 37 °C.

Increase centrifugation time to obtain clear lysate.

Grind the plant material to a fine powder under liquid nitrogen, no tissue clump should remain.

The elution buffer must be dispensed properly on to the center of the column membrane.

Increase incubation time by 2-3 minutes.

- B: Low quality DNA
- 1. Nuclease contamination
- 2. RNA contamination

Use autoclaved plastic and glassware.

RNase digestion is insufficient. Check that RNase A is added to the lysate.

Avoid vigorous mixing.

- 3. Sheared Genomic DNA
- C: DNA does not perform well

Residual wash buffer in eluate

Spin the column with close lid for 1-2 minutes extra at \geq 10,000 rpm, to remove residual wash buffer completely.

14. Product Use Limitations

mdi kits are developed and manufactured for research purpose only. The products are not recommended to be used for human, diagnostics or drug purposes for which these should be cleared by the concerned regulatory bodies in the country of use.

15. Product Warranty and Satisfaction Guarantee

All mdi products are guaranteed and are backed by our

- a. Technical expertise and experience of over 30 years.
- b. Special mdi process for consistency and repeatability.
- c. Strict quality control and quality assurance regimen.
- d. Certificate of analysis accompanied with each product.

mdi provides an unconditional guarantee to replace the kit if it does not perform for any reasons other than misuse. However, the user needs to validate the performance of the kit for its specific use.

16. Ordering Information

To order please specify as below:

Туре		XX	XX	XX		Х		Pack Size		
Туре	Code						Pa	ck Size	Code	
PTGK	PTGK							50	0050	
								250	0250	
								1000	1000	
			-							
Example:		PTGK	XX	ХХ	(ХХ	(Х	0250	

UGLPTGKKIT1505A